TECHNOLOGY: shifts in the foundational paradigms of Big Data to create next generation capabilities

October 2014

Howard Wactlar

Information and Intelligent System Division CISE Directorate
National Science Foundation

Shifts in Paradigms for Data Analysis

- Dynamic and adaptive design of data analysis methods based on data characteristics
- Heuristics in statistics
 - > Al paradigms applied in computational processing
- Systems that "reason": analyzing data in context of existing knowledge
 - > Information extraction and understanding of text
 - Semantic analysis and encoding of published works
- Model synthesis from first principles, hypotheses and data analysis/mining

Shifts in Paradigms for Data Analysis - 2

Model guided data collection

Data guided model revision

- Collaborative synthesis of new knowledge
 - "Human Computation" applied to model formation and discovery
- Discovery Informatics
 - Automating methods for understanding causality and casual cascades
 - Representing and capturing scientific process (e.g., scientist activities)
 - Building more effective many-human-computer team interaction

Big Data Capabilities

	Smallæra	Bigæra	Next generation
Goals	Answer 38 13 pecific 2	Flexible goals, possibly l-	Knowledge@assimilation@
	question, testablish ?	posed aquestions, 2	and@reasoning,@
	correlations	probabilistic prediction	understanding ausality
Location mmmm	One⊡place	Highlydistributed	Amorphous
Datastructure &Content	Highly:tructured	Absorbs@unstructured@data@from@many@sources	Differing@n@uncertainty@ and@quality;@tombined@ with@tertified@knowledge
Data 2 preparation	Bylluserlibr is mall lig roup	Many®sources,@many@people,@possibly@unconnected@to@users	Captured aw, addoc; combined w/ certified, standardized data
Longevity	Limited	Perpetual	Perpetual@and@euseable
Reproducibility	Repeatable	Notinecessarily: repeatable	NewIdata, Information, I knowledge Itontinuously I alters I esults
Analysis	Allsdatasanalyzeds together,sallsatsonce	Analyzed@n@ncremental@steps,@distributed	Continuous processing within context

Adapted from Berman, J.K.(2013) Principles of Big Data, New York; Elsevier

Still in progress ...

- Foundational shifts supporting:
 - > real-time processing of continuous data / continuous analysis
 - customized hardware and networking architectures for infrastructure
- Sensing → Data → Knowledge → Practice

Thanks!

